wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a line y=mx(m>0)intersect the parabola,y2=x at a point ๐‘ƒ, other than the origin. Let the tangent to it at ๐‘ƒ meet the xโˆ’axis at the point Q. If area(ฮ”๐‘‚๐‘ƒ๐‘„)=4sq. units, then m is equal to


Open in App
Solution

Step 1: Illustrating the figure and Finding the equation of the tangent

solution

Let P(t2,t) and be a point on the parabola then equation of tangent to the parabola at point

โ‡’y-t=m1x-t2...(i)[โˆตequationoflinepassingthrough(x1,y1)isy-y1=m1x-x1

Where m1 is slope of line and we know m1=dydt

โˆตy2=xgivenequationofparabolaโ‡’2ydydx=1differentiatingw.r.t.xโ‡’dydx=12yโ‡’m1=12tโˆตm1=dydxatPt2,tโ‡’y=tโ‡’y-t=12tx-t2[from(i)]โ‡’2ty=x+t2......(ii)

โˆต(ii) intersect thex axis also so put y=0 in it

โ‡’0=x+t2โ‡’x=-t2

So for triangle OPQ coordinates of Q be -t2,0

Step 2: Finding Area of triangle :

The area of triangle having vertices P(t2,t) ,Q-t2,0 and O(0,0) โ‡’12001t2t1-t201โˆตareaoftrianglehavingvertices(p,q),(r,s)&(t,u)=12pq1rs1tu1โ‡’12001t2t1-t201=4โˆตAreaofโˆ†POQ=4givenโ‡’0-0+10--t2ยทt=8โ‡’t3=8โ‡’t=2...(iii)[takingcuberootbothsides]

Step 3: Finding the value of m

The given equation of line y=mx, intersect the parabola y2=x then

โ‡’mx2=xโ‡’m2=1xโ‡’m2=1t2โˆตitpassingthroughQ(t2,0)โ‡’m=1t[takingsquarerootbothsides]โ‡’m=12[from(iii)]

Thus the value of m=12


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and a Parabola
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon