Let A=x∈W,thesetofwholenumbersandx<3,B=x∈N,thesetofnaturalnumbersand2≤x<4 and C=3,4, then how many elements will (A∪B)×C contain?
6
8
10
12
Finding the number of elements in (A∪B)×C:
The given set is, A=x∈W,thesetofwholenumbersandx<3
⇒A=0,1,2
Also,B=x∈N,thesetofnaturalnumbersand2≤x<4
⇒B=2,3
Given, C=3,4
Therefore, (A∪B)=0,1,2,3
The number of elements in A∪B:
n(A∪B)=4
And, n(C)=2
So, the number of elements in (A∪B)×C:
n[(A∪B)×C]=4×2=8
Hence, the correct answer is option (B).
Name the property where a,bandc
a+b=b+a:
Write all the integers between the given pairs. (write them in increasing order) Writethemintheincreasingorder
-4and4