wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let α and β be the roots of x2x1=0, with α>β. For all positive integers n, define

an=αnβnαβ,n1

b1=1 and bn=an-1+an+1,n2.

Then which of the following options is/are correct?


A

a1+a2+a3+.+an=an+21,n1

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

n=1an10n=1089

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

n=1bn10n=889

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

bn=αn+βn,n1

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

bn=αn+βn,n1


Determining the correct statements:

Option(A):

a1+a2+....+an=ai=αiβiαβan=αnβnαβ,n1

Since sum of nth term of geometrical progression with first terma and common ratior =a(1-rn)1-r,r<1

a1+a2+....+an=α(1-αn)1-α-β(1-βn)1-βα-β=(1+α)(1-αn)-(β+1)(1βn)(1α)(1β)(αβ)=α2αn+2β2+βn+2(1α)(1β)(αβ)=α2β2+αn+2-βn+2(1α)(1β)(αβ)

Since we know that difference of roots of ax2+bx+c=b2-4aca therefore α-β=5

a1+a2+....+an=5+αn+2-βn+2β-α=1+an+2a1+a2+....+an=1+an+2

Hence, option (A) is correct.

Option(B):

n=1an10n=αnβn(αβ)10n

Since we know infinite sum of GP with term a with common ration r =a1-r

n=1an10n=1αβα101-α10-β101-β10αandβaretheroots=1αβα10-α-β10-β=1αβ10(αβ)αβ+αβ10010(α+β)+αβ=1510510010-1α+β=1,αβ=-1,&α-β=5=1089

Hence, option (B) is correct.

Option(D):

bn=an+1+an1=αn+1βn+1αβ+αn-1βn-1αβan=αnβnαβ,n1=αn1(α+2)βn1(β+2)αβ=αn15+52βn15-52αβBysolvingα+β=1&α-β=5=5αn15+125βn15-12αβ=5αn+βnαβbn=αn+βn

Hence, option (D) is correct .

Option(C):

n=1bn10n=α10n+β10n[fromoption(D)]=α101-α10+β101-β10[sumofinfiniteGP]=α1-α+β1-β=10(α+β)2αβ10010(α+β)+αβ=10+289=1289889

Thus, option (C) is incorrect .

Hence, options (A), (B), and (D) are correct.


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of GP
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon