Let EC denote the complement of an event E. LetE1,E2 and E3 be any pair wise independent events with PE1>0 and PE1∩E2∩E3=0. Then PE2C∩E3C/E1 is equal to:
PE3C-PE2C
PE3-PE2C
PE3C-PE2
PE2C+PE3
Explanation for correct option:
Finding the value of PE2C∩E3C/E1:
Given the equation is,
PE2C∩E3CE1=PE2C∩E3C∩E1PE1=PE1-PE1∩E2-PE1∩E3+PE1∩E2∩E3PE1=PE1-PE1·PE2-PE1·PE3+0PE1=1-PE2-PE3=PE3C-PE2[∵PE3+PE3C=1]
Since,
PE2C∩E3CE1=PE3C-PE2
Hence, the correct answer is option (C).