wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f:0,2R be the function defined by

fx=3-sin2πxsinπx-π4-sin3πx+π4

If , α,β0,2 are such that x0,2:fx0=α,β, then the value of β-α is _____


Open in App
Solution

Finding the value of β-α

Given, the function is:

fx=3-sin2πxsinπx-π4-sin3πx+π4

Let,

πx-π4=θfx0

Then,

3-sin2θ+π2sinθ-sin3θ+π4+π+π03-sin2θ+π2sinθ-sin3θ+π+π03sinθ-cos2θsinθ+sin3θ0......(1)

we know that,

sin3θ=3sinθ-4sin3θcos2θ=1-2sin2θ

Substituting the above values in the Equation 1:

3sinθ-1-2sin2θsinθ+3sinθ-4sin3θ03sinθ-sinθ+2sin3θ+3sinθ-4sin3θ05sinθ-2sin3θ0sinθ5-2sin2θ0

Therefore,

5-2sin2θ02sin2θ=5sin2θ=52

So that we consider

sinθ0x0,2πx-π4-π4,7π4

Then,

θ0,ππx-π40,πx14,54

Considering the above value as,

α=14β=54

Then the value of β-α will be,

β-α=54-14β-α=5-14β-α=44β-α=1

Hence, the correct value of β-α is equal to 1.


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon