Let f:R→R be a continuous function such that f(x)+f(x+1)=2 for all x∈R.
If I1=∫08f(x)dxandI2=∫-13f(x)dx, then the value of I1+2I2 is equal to:
Determine the value of I1+2I2:
We have, f(x)+f(x+1)=2......(1)
Putting x→x+1
f(x+1)+f(x+2)=2.....(2)
Now, equating (1)-(2):
f(x)+f(x+1)-f(x+2)-f(x+1)=0⇒f(x)=f(x+2)
Therefore, we can say that: f(x)=f(x+T)whereT→period=2
Solving the integral operation:
I1=∫08f(x)dx⇒I1=∫08f(x)dx⇒I1=∫02×4f(x)dx⇒I1=4∫02f(x)dx
Similarly,
I2=∫-13f(x)dx⇒I2=∫04f(x+2)dx⇒I2=∫042-f(x)dx⇒I2=8-2∫02f(x)dx∴I1+2I2=16
Hence, the value of I1+2I2 is 16.