Let f(x) and g(x) be two functions satisfying fx2+g(4-x)=4x3 and g4-x+g(x)=0,Then what is the value of ∫-44fx2dx.
Finding the value of ∫-44fx2dx:
Given, fx2+g(4-x)=4x3 and g4-x+g(x)=0
Put, I=∫-44fx2dx
=∫-40fx2dx+∫04fx2dx
⇒I=2∫04fx2dx…(1)∫-40fx2dx=∫04fx2dx
Now replace x with (4-x) ,
⇒I=2∫04f4-x2dx…(2)
Adding equation (1) and (2), we get,
⇒2I=2∫04fx2+f4-x2dx…(3)
Now using, fx2+g(4-x)=4x3…(4)
Replace x with (4-x).
⇒f4-x2+g(4-x)=44-x3…(5)
Adding equation (4) and (5), we get,
⇒f4-x2+fx2+g(x)+g(4-x)=4x3+4(4-x)3⇒f4-x2+fx2=4x3+4-x3
Now, I=∫04x3+4-x3dx=512.
Hence, the value of ∫-44fx2dx is 512.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2