Let f(x)=∫0xetf(t)dt+ex be a differentiable function for all x∈R. Then f(x) equals:
2eex-1-1
eex-1-1
2eex-1
eex-1
Explanation for the correct answer
Given that: f(x)=∫0xetf(t)dt+ex
Differentiating the expression with respect to x.
⇒f'(x)=exf(x)+ex⇒f'(x)=ex(f(x)+1)⇒∫0xf'(x)(f(x)+1)dx=∫0xexdx⇒log(f(x)+1)0x=ex0x[∵∫f'(x)(f(x)+c)=log((f(x)+c))]⇒log(f(x)+1)-log(f(0)+1)=ex-e0⇒log(f(x)+1)-log(2)=ex-1[as,f(x)=1]⇒logf(x)+12=ex-1[∵loga-logb=logab]
Taking anti-log on both sides:
⇒ f(x)+12=e(ex-1)
⇒ f(x)+1=2e(ex-1)
⇒ f(x)=2e(ex-1)-1
Hence, the correct answer is option (A).