Let f(x)=(sin(tan−1x)+sin(cot−1x))2−1, where |x|>1.If
dydx=12ddx(sin−1f(x))
and y(3)=π6, then y(-3) is equal to:
π3
2π3
–π6
5π6
Explanation for The correct option:
Finding the value of y(-3)
The given function,
f(x)=(sin(tan−1x)+sin(cot−1x))2−1....(i)
⇒f(x)=sintan−1x+sinπ2−tan−1x2−1=sintan−1x+costan−1x2−1∵cosθ=sinπ2-θ=sin2tan−1x+cos2tan−1x+2sintan−1xcostan−1x−1=1+2sintan−1xcostan−1x−1∵cos2θ+sin2θ=1=sin(2tan−1x)...(ii)∵2sinθcosθ=sin2θ
As given,
dydx=12ddx(sin−1f(x))⇒2dydx=ddx(sin−1f(x))
Integrating it w.r.t. x
⇒2y(x)=sin−1sin2tan−1x+c....(iii)⇒2×π6=sin−1sin2tan−13+c∵from(ii)f(x)=sin2tan−1xandy(3)=π6isgiven⇒π3=sin−1sin2π3+c∵tanπ3=3⇒π3=sin−1sinπ-π3+c⇒π3=π3+c⇒c=0
Putting value of c and x=-3 into equation (iii)
⇒2×y−3=sin−1sin(2tan−1−3=sin−1sin(2×-π3=-π3∵sin−1(sinθ)=θifθ=−π2,π2⇒2y−3=-π3⇒y−3=-π6
Hence, the correct option is (C)