Let ω be a complex number such that 2ω+1=z where z=-3. If 1111-ω2-1ω21ω2ω7=3k. Then k is equal to,
z
-1
1
-z
Determine the value of k
We have, 1111-ω2-1ω21ω2ω7=3k, and 2ω+1=z
⇒2ω+1=-3[∵z=-3]⇒ω=-1+-32
Since, ω is the cube root of unity, therefore, ω3n=1 and also,
ω2=-1-3i2, Now we have,
1111-ω2-1ω21ω2ω7=3k⇒1111ωω21ω2ω=3k∵1+ω+ω2=0,(ω3)2ω=ω
Apply R1→R1+R2+R3 we get,
31+ω+ω21+ω+ω21ωω21ω2ω=3k⇒3001ωω21ω2ω=3k⇒3ω2-ω4=3k⇒-1-3i2--1+3i2=k⇒-3i=k⇒-z=k
Hence, option D is the correct answer.