Let PQ be a diameter of the circle x2+y2=9. If α and β are the lengths of the perpendiculars fromP and Q on the straight line,x+y=2 respectively, then the maximum value of αβ is:
Explanation for the correct answer:
Finding the value of αβ
α=3cosθ+3sinθ-22β=3cosθ+3sinθ+22αβ=3cosθ+3sinθ2-42a+b2=a2+b2+2abαβ=9+9sin2θ-42[sin2θ+cos2θ=1]αβ=5+9sin2θ2αβ≤7(∵sinθ≤1)
Therefore the correct answer is αβ≤7