Let S be the set of points where the function,f(x)=|2-x|-3||,x∈R, is not differentiable. Then, the value of∑x∈Sf(f(x)) is equal to
Determine the value of ∑x∈Sf(f(x)).
On checking the differentiability, we get
f(x)=1-xx<1x-11≤x<35-x3≤x<5x-5x≥5
Since, f(x)=|2-|x-3||, so f(x) is not differentiable at
x=1,3,5
∴S=1,3,5
Thus,
∑x∈sf(x)=f(f(1))+f(f(3))+f(f(5))=f(0)+f(2)+f(0)=1+1+1=3
Therefore,∑x∈Sf(f(x))=3