Let sin(α-β)=513 and cos(α+β)=35 where α,β∈(0,π4) then tan2α
6316
6116
6516
329
Determine the value of tan2α.
Step 1: Calculate the value of tan(α+β)andtan(α-β)
sin(α-β)=513∴cos(α-β)=1213
Similarly cos(α+β)=35
∴sin(α+β)=45
Thus,tan(α-β)=512andtan(α+β)=43
Step 2:Calculate the value of tan2α
⇒tan(A+B)=tanA+tanB1-tanAtanB⇒tan(α+β+α-β)=tan(α+β)+tan(α-β)1-tan(α+β)tan(α-β)⇒tan(2α)=43+5121-43.512⇒tan(2α)=6316
Hence, option A is the correct answer.
Let A and B denote the statements
A :cosα+cosβ+cosγ=0,
B : sinα+sinβ+sinγ=0
If cos(β-γ)+cos(γ-α)+cos(α-β)=-32 then
If cos(α+β)=4/5andsin(α–β)=5/13,where0≤α,β≤π/4, then tan2α is equal to