Let Sk=∑tan-16r2r+1+32r+1r=1k. Then limk→∞Sk=
tan-1(32)
cot-1(32)
π2
tan-1(3)
Explanation for the correct option:
On solving, we get:
Sk=∑r=1ktan-16r2r+1+32r+1
Divide this by 32r, we get
Sk=∑r=1ktan-123r232r.2+3=∑r=1ktan-123r3232r+1+1
Now, put 23r=t
Sk=∑r=1ktan-1t31+23t2=∑r=1ktan-1t-2t31+t.23t=∑r=1ktan-1(t)-tan-12t3∵tan-1(x)-tan-1(y)=tan-1x-y1+xy=∑r=1ktan-123r-tan-123r+1
On further solving, we get:
Sk=tan-123-tan-123k+1⇒S∞=limk→∞tan-123-tan-123k+1=tan-123-tan-10=tan-123∵tan-1(0)=0=cot-123
Hence, the correct answer option is (B).