wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let [t] denote the greatest integer less than or equal to t. Then the value of 12|2x[3x]|dxis.


Open in App
Solution

Evaluating the integral:

12|2x[3x]|dx , where x is the greatest integer function less than equal to x.

Let I=122x-3xdx

Now substituting x=t3 and dt=3dx

Then limit changes when x=2 then t=6 and when x=1 then t=3

I=13362t3[t]dtI=19362t3[t]dt

Let us divide the given interval into 3 parts as

I=1934|2t9|dt+45|2t12|dt+56|2t15|dt {x=3,when3<x<4andsoon}

Now by using the identity -x-a=x-a, then we get

I=19349-2tdt+4512-2tdt+5615-2tdt

Let us integrate and apply the limit simplification.

I=199t-2t2234+12t-2t2245+15t-2t2256=199×1+12×1+15×1-42-32-52-42-62-52=1936-42-32+52-42+62-52=1936-36+9=1

Hence, the value of integral is 1


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon