Let the function f:[0,1]→Rbe defined by f(x)=4x(4x+2). Then the value of f140+f240+f340+…+f3940–f22is _____.
Evaluate the given expression:
The Given function, f:[0,1]→Rsuch that
f(x)=4x(4x+2)...(i)
Replacing x by 1-x
f(1-x)=41-x(41-x+2)=2(2+4x)……(ii)
Adding the equation (i) & (ii)
⇒f(x)+f(1-x)=1…..(iii)
Now from , (iii)
⇒f140+f240+f340+…+f3940–f12=f140+f240+…….+f2040+…+f1–340+f1–240+f1–140–f12=f140+f1–340+f240+f1–240+f340+f1–340…..f2040–f12
Putting the value from equation (iii),
=1+1+1+…+1(19times)+f12–f12=19
Hence, the value of,
f140+f240+f340+…+f3940–f22=19