limn→∞12+22+…..+n2n3=
12
23
13
16
Explanation for the correct option:
Finding the value of the given limit:
limn→∞12+22+…..+n2n3=limn→∞n(n+1)(2n+1)6n3∵∑n2=nn+12n+16=16limn→∞(n+1)(2n+1)n2=16limn→∞2n2+n+2n+1n2=16limn→∞2n2+3n+1n2=16limn→∞2+3n+1n2
Applying the limits,
=162+0+0∵x∞=0=26=13
Therefore, the correct answer is option (C).
limn→∞12+22+....+n2n3