limθ→π2π2-θcotθ=
0
-1
1
∞
Explanation for the correct answer:
Finding the value of the given limit:
limθ→π2π2-θcotθ
Applying L'Hospital Rule, i.e., limx→cf(x)g(x)=limx→cf'(x)g'(x)
limθ→π2π2-θcotθ=limθ→π2-1-csc2θ[ddθπ2-θ=-1;ddθcotθ=-csc2θ]=limθ→π21csc2θ
Applying the limits,
=11[∵cscπ2=1]=1
Therefore, the correct answer is option (C).