limx→0[1-cos3x]xsinxcosx=
25
35
32
34
Explanation for the correct option:
Finding the value of the given limit:
limx→0[1-cos3x]xsinxcosx=limx→0(1-cosx)(1+cos2x+cosx)xsinxcosx∵a3-b3=(a-b)(a2+b2-ab)=limx→01-cosxx2×xsinx×1+cos2x+cosxcosx
Applying the limits,
=12×1×1+1+11=12×31=32
Therefore, option (C) is correct.