limx→01+tanx1+sinxx=
1e
1
e
e2
None of these
Explanation for the correct option:
Expanding the given equation and applying the limits:
limx→01+tanx1+sinx2=limx→01+tanx1+sinxx[∵(1+tanx1+sinx)x=1∞form]=elimx→0x1+tanx1+sinx-1=elimx→0x1+tanx-1-sinx1+sinx=elimx→0xtanx-sinx1+sinx
Note that this is the determinante form.
Applying the limits,
limx→01+tanx1+sinx2=e0tan0+sin01+sin0=e0=1
Thus, limx→01+tanx1+sinxx=1
Therefore, the correct answer is option (B).
From the following place value table, write the decimal number:-
From the given place value table, write the decimal number.
Evaluate :cos48°-sin42°