limx→0(2+x)sin(2+x)-2sin2x=
sin2
cos2
1
2cos2+sin2
Explanation for the correct option:
Expanding the given equation and applying the limits:
limx→0(2+x)sin(2+x)-2sin2xUsingL'hospital'sRulelimx→cf(x)g(x)=limx→cf'(x)g'(x)Takingderivativeofumeratoranddenominator=limx→0(2+x)cos(2+x)+sin(2+x)1=limx→0(2+x)cos(2+x)+sin(2+x)
Applying the limits,
=(2+0)cos(2+0)+sin(2+0)=2cos2+sin2
Thus, limx→0(2+x)sin(2+x)-2sin2x=2cos2+sin2
Therefore, the correct answer is option (D).
Solve graphically.
(1)
(2)
(3)
(4)
(5)
(6)