Evaluate: limx→0ddx∫(1-cosx)x2dx
1
0
12
None of these
Explanation for the correct answer:
Simplifying the equation to determinate form and applying the limits:
⇒limx→0ddx∫(1-cosx)x2dx⇒limx→0(1-cosx)x2[∵Differntiationandintegrationgetscancelled]⇒limx→0-(-sinx)2x∵ddx(1-cosx)x2=-(-sinx)2x
Applying the limits
⇒12×1∵limx→0sinθθ=1⇒12
Thus, limx→0ddx∫(1-cosx)x2dx=12
Therefore, the correct answer is option (C).