Evaluate:limx→0esinx-1x
0
e
1
Does not exist
Explanation for the correct answer:
Simplifying the equation to determinate form and applying the limits:
⇒limx→0esinx-1x⇒limx→0esinx-1sinx.sinxx[Multiplyanddividebysinx]
Applying the limits
⇒1×1∵limx→0sinθθ=1andlimx→0ex-1x=1⇒1
Thus, limx→0esinx-1x=1
Therefore, the correct answer is option (C).