Evaluate :limx→0πx-11+x-1
does not exist
is equal to logeπ2
is equal to 1
lies between 10 and 11
Explanation for the correct option:
Find the value of limx→0πx-11+x-1
Consider given value as
I=limx→0πx-11+x-1⇒I=π0-11+0-1⇒I=π0-11-1⇒I=00[indeterminentForm]
Using the L' hospital rule
I=limx→0πx-11+x-1⇒I=limx→0πxlogπ121+x-0⇒I=π0logπ121+0-1⇒I=2logπ1⇒I=2logπ⇒I=logπ2
Hence, the correct answer is option B.