limx→∞1-4x-13x-1=
e12
e-12
e4
e3
Explanation for the correct option:
Finding the value of limx→∞1-4x-13x-1:
The given equation is,
I=limx→∞1-4x-13x-11-0∞→1∞from
We know that
limx→afxgx=elimx→agxfx-1
Then,
I=elimx→∞3x-11-4x-1-1⇒I=elimx→∞3x-1-4x-1⇒I=elimx→∞-4x3-1xx1-1x⇒I=elimx→∞-43-1x1-1x
At,
x→∞1x→1∞→0
I=e-43-01-0⇒I=e-4×3⇒I=e-12
Hence, the correct answer is option (B).
Compare the given fraction and replace '□'by an appropriate sign '<or>'
47□49
The sum of the series 23!+45!+67!+... to ∞ = ae. Find (a+3)2.
Add
712+49