Evaluate: limitx→∞x33x2-4-x23x+2
-14
-12
0
29
Explanation for the correct option:
Evaluate the limit.
limitx→∞x33x2-4-x23x+2=
when we substitute limit it becomes the value ∞, that does not exist, hence
limitx→∞x33x2-4-x23x+2=limitx→∞x33x+2-x23x2-43x2-43x+2=limitx→∞3x4+2x3-3x4+4x29x3-12x+6x2-8=limitx→∞x32+4x3x39-12x2+6x-8x3[Takingx3commoninnumeratoranddenominator]=2+4∞39-12∞2+6∞-8∞3=29[∵1∞=0]
Hence, option (D) is the correct answer