wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limxπ2acotx-acosxcotx-cosx,a>0=


A

logeπ2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

loge2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

logea

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

a

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

logea


Explanation for Correct Answer:

limitxπ2acotx-acosxcotx-cosx=

When we substitute the limit, it becomes the value does not exist

limitxπ2acotx-acosxcotx-cosx=limitxπ2acosxacotxacosx-1cotx-cosxtakingacosxcommoninnumerator=limitxπ2acosxacotx-cosx-1cotx-cosxax-y=axay=limitxπ2acosx.limitxπ2acotx-cosx-1cotx-cosx

=acosπ2.limitxπ2acotx-cosx-1cotx-cosx=a0.I(i)cosπ2=0,I=limitxπ2acotx-cosx-1cotx-cosx

I=limitxπ2acotx-cosx-1cotx-cosx

Let's take y=cotx-cosx

Limit xπ2, y0y=cotπ2-cosπ2=0

I=limity0ay-1y=ln(a)limity0ay-1y=lna

Substituting the value of I in equation (i)

limitxπ2acotx-acosxcotx-cosx=a0.I=1.logeaa0=1

Therefore, limitxπ2acotx-acosxcotx-cosx=logea

Hence, option (B) is the correct answer


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon