limitx→tan-13tan2x-2tanx-3tan2x-4tanx+3=
1
2
0
3
Explanation for correct answer:
Calculating the value:
limitx→tan-13tan2x-2tanx-3tan2x-4tanx+3=limitx→tan-13tan2x+tanx-3tanx-3tan2x-tanx-3tanx+3∵-2tan(x)=-3tan(x)+tanx=limitx→tan-13tanxtanx+1-3tanx+1tanxtanx-1-3tanx-1=limitx→tan-13tanx+1tanx-3tanx-1tanx-3=tantan-13+1tantan-13-1=3+13-1∵tan(tan-1x)=x=2
Hence, option (B) is the correct answer.
Solve: 3+√33−√3+3−√33+√3+13+√3−13−√3
Solve this problem 3+3+3+3+3+3+3+3+3+3+1+2=??
The value of (−3y)3 is_______.