wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

limx0tanπ4+x1x=


A

e

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

e2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

e2


Explanation for Correct Answer:

Evaluating the given function:

Given,

limitx0tanπ4+x1x=limitx0tanπ4+tanx1-tanπ4tanx1x[tan(A+B)=tan(A)+tan(B)1-tan(A)tan(B)]=limitx01+tanx+tanx-tanx1-tanx1x[Addandsubtracttan(x)innumerator]=limitx01-tanx+2tanx1-tanx1x=limitx01-tanx1-tanx+2tanx1-tanx1x=limitx01+2tanx1-tanx1x=1form

If limitxaf(x)g(x)=1,then limitxaf(x)g(x)=elimitxaf(x)-1g(x)

limitx01+2tanx1-tanx1x=elimitx01x.1+2tanx1-tanx-1....(i)

First, we solve

limitx01x.1+2tanx1-tanx-1=2limitx0tanxx.11-tanx=2limitx0tanxx.limitx011-tanx[limitx0tanxx=1]=21.11-tan0=2[tan0=1]

Substitute in equation (i)

limitx01+2tanx1-tanx1x=elimitx01x.1+2tanx1-tanx-1=e2[limitx01x(1+2tan(x)1-tan(x)-1)=2]

Hence, the correct answer is option (B).


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon