Solve (1+y)tan2x+tanxdydx+y=0
Simplify and Integrate the equation:
Given that,
(1+y)tan2x+tanxdydx+y=0⇒tanxdydx+tan2x+1y=-tan2x∵Takingyascommonterm⇒tanxtanxdydx+tan2xtanx+1tanxy=-tan2xtanx∵Dividngtheequationbytanx⇒dydx+tanx+cotxy=-tanx∵1tanx=cotx
Integrating the equation
I.F.=e∫tanx+cotxdx=elnsecx+lnsinx=elnsecx·sinx=tanx
Now,
ytanx=-∫tan2xdxytanx=-∫(sec2x-1)dx∵tan2x=sec2x-1ytanx=-tanx+x+c
Therefore, the solution of (1+y)tan2x+tanxdydx+y=0 is -tanx+x+c.
Solve for x and y:
3x−1y+9=0,2x+3y=5 (x≠0,y≠0).
3x−5y−19=0,−7x+3y+1=0.