Solve limn→∞1n∑r=02n−1n2n2+4r2
Finding the value of limn→∞1n∑r=02n−1n2n2+4r2
Given: limn→∞1n∑r=02n−1n2n2+4r2
L=limn→∞1n∑r=02n−1n2n2+4r2L=limn→∞1n∑r=02n−111+4r2n2
Replace
rn→x,1n→dydxlowerlimit=0Upperlimit=limn→∞2n-1n=2
Now, on integration we get
L=∫0211+(2x)2dxL=tan-12x220L=12tan-14–0
Hence, the value of limn→∞1n∑r=02n−1n2n2+4r2is (12)tan-14.
Solve the integral I=∫R∞GMmx2dx