The integral ∫12ex·xx(2+logex)dx equals
e(4e-1)
e(4e+1)
4e2-1
e(2e-1)
Explanation for correct option
Given integral∫12ex·xx(2+logex)dx
Put ex·xx=t
Since upper limit =e2·22, Lower limit =e
(ex·xx+exxx(1+lnx))dx=dtex·xx(2+lnx)dx=dt∫e4e2dt=te4e2=4e2-e=e(4e-1)
Hence, option A is correct .