CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

The integral π6π3tan3x·sin23x2sec2x·sin23x+3tanx·sin6xdx is equal to


A

92

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

-118

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

-19

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

718

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

-118


Explanation for the correct answer:

Step 1: Reduce the given integral into a simpler form by using trigonometric identities

Given integral: π6π3tan3x·sin23x2sec2x·sin23x+3tanx·sin6xdx.

Indefinite integral: tan3x·sin23x2sec2x·sin23x+3tanx·sin6xdx

=tan3x·sin23x2sec2x·sin23x+3tanx·2sin3x·cos3xdxsin2x=2sinx·cosx=2tan3x·sec2x·sin43x+6tan4x·sin33x·cos3xdx

Step 2: Solve the integral by substitution method

Let, z=tan4x·sin43x.

Differentiate both sides of the equation.

dz=dtan4x·sin43xdz=sin43x·dtan4x+tan4x·dsin43xdz=sin43x·4tan3x·sec2x+tan4x·4sin33x·3cos3xdz=4tan3x·sec2x·sin43x+12tan4x·sin33x·cos3xdz2=2tan3x·sec2x·sin43x+6tan4x·sin33x·cos3x

Thus, tan3x·sin23x2sec2x·sin23x+3tanx·sin6xdx=2tan3x·sec2x·sin43x+6tan4x·sin33x·cos3xdx

=dz2=z2+cc=ConstantofIntegration=tan4x·sin43x2+c

Step 3: Apply the limits to integration to find the required value

Now, consider the upper and lower limits of the integral to solve the definite integral.

π6π3tan3x·sin23x2sec2x·sin23x+3tanx·sin6xdx=tan4x·sin43x2π6π3=12tan4π3·sin43×π3-tan4π6·sin43×π6=1234·04-134·14=120-19·1=-118

Therefore, the integral π6π3tan3x·sin23x2sec2x·sin23x+3tanx·sin6xdx is equal to -118.


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon