The negation of p→(~p∨q) is
p∨(p∨~q)
p→~(p∨q)
p→q
p∧~q
Explanation for the correct option:
Given: p→(~p∨q)
We know that the negation of A is given by ~A and the De’ Morgan’s laws says ~(a∨b)=~a∧~b.
So the negation of p→(~p∨q) is,
~p→(~p∨q)=p∧~(~p∨q)∵~(a→b)=a∧~b=p∧(~(~p)∧~q)∵~(a∨b)=~a∧~b=p∧(p∧~q)∵~(~a)=a=p∧p∧~q=p∧~q∵p∧p=p
Therefore, the negation of p→(~p∨q) is p∧~q.
Hence, option D is the correct option.
The negation of q ∨∼(p∧r) is ___.