The sum of the series ∑n=1∞n2+6n+10(2n+1)! is equal to:
418e+198e-1-10
-418e+198e-1-10
418e-198e-1-10
418e+198e-1+10
Explanation of the correct option:
We know that ex=1+x+x22!+x33!+... and e-x=1-x+x22!-x33!+...
Given : ∑n=1∞n2+6n+10(2n+1)!
Put 2n+1=r, where r=3,5,7......
Thus n2+6n+10(2n+1)!=r-122+3r-3+10r!=r2+10r+294(r!)
Now,
,∑n=1∞n2+6n+10(2n+1)!=∑r=3,5,7...r(r-1)+11r+294(r!)=14∑r=3,5,7...1(r-2)!+11(r-1)!+29r!=1411!+13!+15!+......+1112!+14!+16!+.....+2913!+15!+17!+......=14e-1e2+11e+1e-22+29e-1e-22∵e=1+11!+12!+13!+...,e-1=1-11!+12!-13!+...=18e-1e+11e+11e-22+29e-29e-58=1841e-19e-80=418e-198e-1-10Therefore, the value of ∑n=1∞n2+6n+10(2n+1)! is 418e-198e-1-10.
Hence, option (C) is the correct option.