The value of 3cosθ-sinθ4+6sinθ+cosθ2+4sin6θ is, where θ∈(π4,π2)
13-4cos4θ
13-4cos6θ
13-4cos6θ+2sin4θcos2θ
13-4cos4θ+2sin4θcos2θ
Explanation for the correct answer:
Let S=3cosθ-sinθ4+6sinθ+cosθ2+4sin6θ
⇒ S=3cosθ-sinθ22+6sinθ+cosθ2+4(sin2θ)3 ∵a-b2=a2+b2-2ab
⇒ S=3cos2θ+sin2θ-2sinθcosθ2+6cos2θ+sin2θ+2sinθcosθ+41-cos2θ3
⇒ S=31-sin2θ2+61+sin2θ+41-cos6θ-3cos2θ(1-cos2θ) ∵sin2θ=2sinθcosθ,sin2θ+cos2θ=1
⇒ S=31+sin22θ-2sin2θ+61+sin2θ+41-cos6θ-3cos2θsin2θ)
⇒ S=3+3sin22θ-6sin2θ+6+6sin2θ+4-4cos6θ-12sin2θcos2θ
⇒ S=13+34sin2θcos2θ-4cos6θ-12sin2θcos2θ
⇒ S=13-4cos6θ
Therefore, the value of the expression 3cosθ-sinθ4+6sinθ+cosθ2+4sin6θ is 13-4cos6θ.
Hence, option B is the correct answer.