The value of ∫011ex+edx is
1elog1+e2
log1+e2
1elog(1+e)
log21+e
1elog21+e
Explanation for the correct answer.
Evaluate the integral.
∫011ex+edx=∫011ex1+eexdx
Let,
1+eex=t⇒-eexdx=dt⇒1exdx=-1edt
I=-1e∫1+e2dtt=-1elogt1+e2=-1elog21+e=1elog1+e2
Hence, option A is correct .