The value of ∫0π2(sin(x)+cos(x))21+sin(2x)dx=
0
1
2
3
Explanation for correct option
Given: ∫0π2(sin(x)+cos(x))21+sin(2x)dx
Let ∫0π2(sin(x)+cos(x))21+sin(2x)dx=I
I=∫0π2(sin(x)+cos(x))21+sin(2x)dx=∫0π2(sin2(x)+cos2(x)+2sin(x)·cos(x))1+sin(2x)dxas(a+b)2=a2+b2+2ab=∫0π21+sin(2x)1+sin(2x)dxassin2x+cos2x=1and2sin(x)·cos(x)=sin(2x)=∫0π21+sin(2x)dx=∫0π2sin2(x+cos2(x)+2sin(x)cos(x)dx=∫0π2sin(x)+cos(x)2dx=∫0π2sin(x)+cos(x)dx=∫0π2sin(x)·dx+∫0π2cos(x)·dx=-cos(x)0π2+sin(x)0π2=cosπ2-cos(0)+sinπ2-sin(0)=1+1=2
Hence, option C is correct.