The value of ∫0π2sin100(x)-cos100(x)dx is
1100
100!100100
π100
0
Explanation for correct option
Given: ∫0π2sin100(x)-cos100(x)dx
Let I=∫0π2sin100(x)-cos100(x)dx
I=∫0π2sin100(x)-cos100(x)dx-----(1)
using the property x→a+b-x ∫bax·dx=∫ba(a+b-x)·dx
I=∫0π2sin100π2+0-x-cos100π2+0-xdx⇒I=∫0π2sin100π2-x-cos100π2-xdx⇒I=∫0π2cos100x-sin100xdx-----(2)
Adding (1) and (2)
⇒I+I=∫0π2sin100(x)-cos100(x)dx+∫0π2cos100(x)-sin100(x)dx⇒2I=∫0π2sin100(x)-cos100(x)-sin100(x)+cos100(x)·dx⇒2I=∫0π20·dx⇒2I=0⇒I=0
Hence, option D is correct.