The value of ∫121x+1(x2-1dx is
1
13
23
-23
Explanation for the correct option:
Compute the required value:
Given: ∫121x+1(x2-1dx
Let x=sect , dx=sect·tan(t)·dt
when x=1,t=sec-11=0x=2,t=sec-12=π3
=∫0π3sect·tan(t)sect+1(sec2t-1dt=∫0π3sect·tan(t)sect+1(sec2t-1dt[∵1+tan2(x)=sec2(x)]=∫0π3sect·tan(t)sect+1tan2tdt=∫0π3sect·tan(t)sect+1tantdt=∫0π3sectsect+1dt=∫0π31cost1cost+1dt[∵assec(t)=1cos(t)]=∫0π31cost+1dt[∵cos(2t)+1=2cos2(t)]=∫0π312cos2t2dt=12∫0π3sec2t2dt[∵as∫sec2(x)dx=tan(t)]=12×2×tan(t2)0π3=tanπ6-tan(0)=13-0=13
Hence, option B is the correct answer.