The value of ∫1e1+log(x)3xdx=
14
12
34
e
1e
Explanation for the correct option:
Compute the required value:
Given: ∫1e1+log(x)3xdx
I=∫1e1+log(x)3xdxI=13∫1e1xdx+13∫1elog(x)xdx
Let log(x)=t⇒1x·dx=dt
when x=1,t=0x=e,t=1
I=13∫01(1)dt+13∫01tdtI=13t01+13t2201I=131-0+1312-0I=13+16I=12
Hence, option B is the correct answer.