The value of ∫-22xcos(x)+sin(x)+1dx is
2
0
-2
4
Explanation for the correct option:
Compute the required value:
Given: ∫-22xcos(x)+sin(x)+1dx
⇒∫-22xcos(x)+sin(x)+1dx⇒∫-22xcos(x)dx+∫-22sin(x)dx+∫-221dx
using integration by parts ∫f(x)·g(x)·dx=f(x)·g(x)'-∫f(x)'∫g(x)·dx·dx
put f(x)=x,g(x)=cos(x)
∫-22(x·cos(x))dx=-x·sin(x)+∫(sin(x)·dx∫-22(x·cos(x))dx=-x·sin(x)+(cos(x)
∫-22xcos(x)+sin(x)+1dx=cos(x)-x·sin(x)-22-cos(x)-22+x-22∫-22xcos(x)+sin(x)+1dx=cos(2)-cos(-2)-2sin(2)-2sin(-2)-cos(2)+cos(-2)+2-(-2)∫-22xcos(x)+sin(x)+1dx=cos(2)-cos(2)-2sin(2)+2sin(2)-cos(2)+cos(-2)+4∫-22xcos(x)+sin(x)+1dx=4
Hence, option D is the correct answer.