The value of ∫23x+1x2(x-1)dx is
log169+16
log169-16
2log2-16
log43-16
Explanation for correct option:
Compute the required value:
Given: ∫23x+1x2(x-1)dx
Using the fraction decomposition method
Let Ax+Bx2+Cx-1=x+1x2(x-1)
⇒Ax+Bx2+Cx-1=x+1x2(x-1)⇒A(x)(x-1)+B(x-1)+C(x2)x2(x-1)=x+1x2(x-1)⇒Ax2-Ax+Bx-B+Cx2x2(x-1)=x+1x2(x-1)⇒x2(A+C)+x(-A+B)-Bx2(x-1)=x+1x2(x-1)
Comparing like terms from both sides
-B=1⇒B=-1-A+B=1⇒A=-2A+C=0⇒C=2
⇒∫23x+1x2(x-1)dx=∫23-2xdx+∫23-1x2dx+∫232(x-1)dx⇒∫23x+1x2(x-1)dx=-2log(x)23-x-2+1-2+123+2log(x-1)23[∫1x.dx=log(x),∫xn.dx=xn+1n+1]⇒∫23x+1x2(x-1)dx=-2log(3)-log(2)-13-12+2log(3-1)-log(2-1)⇒∫23x+1x2(x-1)dx=-2log32-16+2log(2)[log(a)-log(b)=logab]⇒∫23x+1x2(x-1)dx=log49+log(4)-16⇒∫23x+1x2(x-1)dx=log169-16[log(m)+log(n)=log(mn)]
Hence, option (B) is the correct answer.