The value of ∫-π2π2cos(x)-cos3(x)dx is
0
43
23
15
Step 1: Compute the required value:
Given: ∫-π2π2cos(x)-cos3(x)dx
∫-π2π2cos(x)(1-cos2(x))dx⇒∫-π2π2cos(x)(sin2(x))dx1-cos2x=sin2x⇒∫-π2π2sin(x)cos(x)dx
Put x=-x
∫-π2π2sin(-x)cos(-x)dx=-∫-π2π2sin(x)cos(x)dx
So ∫-π2π2cos(x)-cos3(x)dx is an even function,
∫-π2π2cos(x)-cos3(x)dx=2∫0π2cos(x)-cos3(x)dx
Step 2: Integrate the expression
Let cos(x)=t
-sin(x).dx=dt
When x=π2,t=0
x=0,t=1
2∫0π2cos(x)-cos3(x)dx=2∫01tdt⇒2∫0π2cos(x)-cos3(x)dx=2∫01t12dt⇒2∫0π2cos(x)-cos3(x)dx=2t12+112+101⇒2∫0π2cos(x)-cos3(x)dx=2t323201⇒2∫0π2cos(x)-cos3(x)dx=431-0⇒2∫0π2cos(x)-cos3(x)dx=43
Hence, option (B) is the correct answer.
The value of ∫02|x2-1|dx is