The value of ∫-π4π4logsecθ-tan(θ)dx is
0
π4
π
π2
Explanation for the correct option:
Compute the required value:
Given: ∫-π4π4logsecθ-tan(θ)dx
Put θ=-θ
⇒logsecθ+tan(θ)⇒logsecθ+tan(θ)1⇒logsecθ+tan(θ)sec2θ-tan2(θ)sec2θ=1+tan2(θ)⇒logsecθ+tan(θ)secθ-tan(θ)(secθ+tan(θ)⇒log1(secθ-tan(θ)⇒-log(secθ-tan(θ)
So, logsecθ+tan(θ) is an odd function.
∫-π4π4logsecθ-tan(θ)dx is equal to 0.
Hence, option A is the correct answer.