The value of ∫-ππcos2(x)1+axdx,a>0 is
2π
πa
π2
aπ
Explanation for the correct option:
Compute the required value:
Given: ∫-ππcos2(x)1+axdx
Let I=∫-ππcos2(x)1+axdx-------(1)
substitute x→π+(-π)-x⇒-x
I=∫-ππcos2(x)1+axdx⇒∫-ππcos2(-x)1+a-xdxI=∫-ππcos2(x)1+1axdxI=∫-ππaxcos2(x)ax+1dx-----(2)
Add equations (1) and (2)
I+I=∫-ππcos2(x)1+axdx+∫-ππaxcos2(x)1+axdx2I=∫-ππ(1+ax)cos2(x)1+axdx2I=∫-ππcos2(x)dx2I=∫-ππ1+cos2x2dxI=14∫-ππ(1)·dx+∫-ππcos(2x)dxI=14x-ππ+sin(2x2-ππI=14π+π+sin(2π)+sin(2π)2I=π2
Hence, option A is the correct answer.