The value of ∫-ππsin3xcos2xdx is
1
2
3
0
Explanation for the correct option:
Compute the required value:
Given: ∫-ππsin3xcos2xdx
Put x=-x
⇒∫-ππsin3(-x)cos2(-x)dx⇒-∫-ππsin3(x)cos2(x)dx
so, ∫-ππsin3xcos2xdx is an odd function. [∵∫-aaf(x)dx=0,f(-x)=-f(x)]
Hence ∫-ππsin3xcos2xdx equal to 0,
Hence, option D is the correct answer.
A circle of radius 2cm is cut out from a square piece of an aluminium sheet of side 6cm. What is the area of the left over aluminium sheet?(Takeπ=3.14)