The value of limn→∞(1+2+...+n)3n2+5 is
13
15
16
6
Explanation for the correct option:
Given, limn→∞(1+2+...+n)3n2+5
We know that the sum of n natural numbers is n(n+1)2.
Simplifying the given expression,
limn→∞(1+2+...+n)3n2+5=limn→∞n(n+1)23n2+5⇒limn→∞(1+2+...+n)3n2+5=12limn→∞n2+n3n2+5⇒limn→∞(1+2+...+n)3n2+5=12limn→∞1+1n3+5n2⇒limn→∞(1+2+...+n)3n2+5=1213⇒limn→∞(1+2+...+n)3n2+5=16
Hence, option C is the correct answer.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
The value of limn→∞3n+2n3n−2nis