The value of limx→01x3∫0xtln1+tt4+4dt is,
0
112
124
164
Explanation of the correct option.
Compute the required value.
Given : limx→01x3∫0xtln1+tt4+4dt
By Leibnitz's rule it can be written as,
⇒limx→0xln1+xx4+43x2⇒13limx→0ln1+xx(x4+4)⇒13limx→0ln1+xx(x4+4)limx→0ln1+xx=1⇒1314⇒112
Therefore, the value of limx→01x3∫0xtln1+tt4+4dt is 12.
Hence, option B is the correct option.
The value of limx→01x3∫x0tln(1+t)t4+4dt is
If [2 1 3] ⎡⎢⎣−1 0 −1−1 1 00 1 1⎤⎥⎦⎡⎢⎣10−1⎤⎥⎦=A, then find the value of A.