The value of limx→0cosxcot2x is
e-1
e-12
1
Does not exist.
Explanation of the correct option.
Compute the required value.
Given : limx→0cosxcot2x
⇒cos0cot20
⇒1∞
Let L=limx→0cosxcot2x
Taking log both side,
⇒lnL=loglimx→0cosxcot2x⇒lnL=limx→0logcosxcot2x⇒lnL=limx→0cot2xlogcosx⇒lnL=limx→0logcosxtan2x⇒lnL=00
Using L. Hospital rule,
lnL=1cosx-sinxsec22x.2⇒lnL=01.1.2⇒lnL=0⇒L=e0⇒L=1
Therefore the value of limx→0cosxcot2x is 1.
Hence, option C is the correct option.